Vermiculite functionalized surface with methyl-imidazole as support for immobilization of organic dyes.

Karla S. P. Leite¹ (IC), Haryane R. M. da Silva¹ (PG), Ercules E. S. Teotonio¹ (PQ), Wagner M. Faustino¹ (PQ), Hermi F. Brito² (PQ)

Palavras Chave: Vermiculita, adsorção, corantes, metil-imidazol.

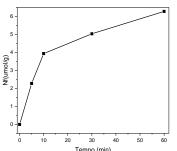
Abstract

This work reports the synthesis and adsorption studies of vermiculite functionalized surface with methyl-imidazole group as support for immobilization of organic dyes.

Introdução

O descarregamento de corantes orgânicos pelas indústrias em ambientes aquáticos é fato concreto, tornando-se um grave problema ambiental devido à elevada toxicidade e baixa biodegradabilidade¹. Pesquisas têm sido realizadas no intuito de diminuir tais danos através da remoção desses corantes por meio de técnicas, como por exemplo, adsorção. O uso de adsorventes de baixo custo e localmente disponíveis tais como os argilominerais aparecem como uma alternativa viável devido às suas propriedades como área superficial e grupos funcionais.

Resultados e Discussão


A vermiculita previamente purificada foi ativada por tratamento ácido com HNO₃ a 3,0 mol/L (V₃), seguida pela funcionalização com o organosilano 3-cloropropiltrimetoxissilano (V₃-CI). Em seguida, foi realizada uma reação com o grupo metil-imidazol obtendo-se uma superfície aniônica (V₃-MID⁺CI) a qual foi utilizada como adsorvente para os corantes vermelho, azul e amarelo de remazol. Os ensaios adsortivos foram preparados a partir do contato de 20 mg da matriz (V₃-MID⁺CI) com soluções aquosas dos corantes. Ao término de cada ensaio, o material foi filtrado e lavado até agua de lavagem incolor. Diferentes intervalos de tempo e concentrações foram avaliados.

Os dados de análise elementar de C, Cl e N das matrizes funcionalizadas (Tabela 1) indicam o êxito da reação devido aos valores expressivos de cloro na primeira etapa e de nitrogênio na etapa subsequente.

Tabela 1. Dados de análise elementar de Carbono, Cloro e Nitrogênio das matrizes.

Matriz	%	%CI	%N
V ₃ -CI	9.3	9.6	-
V ₃ -MID ⁺ Cl ⁻	8.7	5.7	1.2

A isoterma de adsorção para o vermelho de remazol (Figura 2a) mostra um perfil crescente ao longo do tempo. Tal inclinação indica uma interação efetiva entre o corante e os sítios da superfície adsorvente. Na (figura 2b) é mostrado à mudança gradual da coloração da solução após o contato com a matriz adsorvente em diferentes tempos.

Figura 2. (a) Isoterma de tempo do corante vermelho de remazol com a vermiculita funcionalizada e (b) solução dos sobrenadantes após contato com a matriz no tempo 0, 30 e 60 min.

Conclusões

Os resultados evidenciam a efetiva reação de modificação química sobre a vermiculita. Os ensaios adsortivos mostram que o material estudado é um candidato viável para ser utilizado na remoção de corantes orgânicos.

Agradecimentos

Ao CNPq e a Capes pelo apoio financeiro

¹ Yagub, M. T.; Sen, T. K.; Afroze, S. e Ang. H. M. Adv. Col Int. Science. **2014**, *172-184*.

¹Departamento de Química, Universidade Federal da Paraíba, CEP 58051-970, João Pessoa-PB.

²Instituto de Química - Universidade de São Paulo, CEP 05508-900, São Paulo-SP.